VECTOR OPERATIONS | KEY FACTS

• Given two vectors, $\mathbf{p} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$, we can perform the following vector operations:

o e.g.
$$\mathbf{p} + \mathbf{q} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 + (-2) \\ 5 + 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 9 \end{pmatrix}$$
 (vector addition/subtraction)
o e.g. $\mathbf{p} = 8 \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 8 \times 3 \\ 8 \times 5 \end{pmatrix} = \begin{pmatrix} 24 \\ 40 \end{pmatrix}$ (scalar multiplication.)

• Vector multiplication is covered on the A-Level Further Mathematics course.

EQUAL AND PARALLEL VECTORS | KEY FACTS

- Two vectors are <u>equal</u> if they have the <u>same magnitude and direction</u> (they do not need to occupy the same position in space).
- If \mathbf{a} and \mathbf{b} are *parallel*, they can be written as $\mathbf{b} = t\mathbf{a}$, for some scalar t.
- A *unit vector* is a vector with a magnitude of one unit. To find a unit vector in the direction of a particular vector, divide the vector by its magnitude.

PARALLEL VECTORS | EXAMPLE-PROBLEM PAIR

Given that
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} -3 \\ p \end{pmatrix}$, and $\mathbf{c} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$.

(a) Show that **a** is parallel to **c**.

Find two unit vectors parallel to

(b) Find the value of p such that ${f b}$ is parallel to ${m a}.$

Given that $\mathbf{p} = 2\mathbf{i} - 3\mathbf{j}$, $\mathbf{q} = 5\mathbf{i} - 7.5\mathbf{j}$ and $\mathbf{r} = m\mathbf{i} + 12\mathbf{j}$ (a) Show that \mathbf{p} is parallel to \mathbf{q} .

(b) Find the value of *m* such that **p** is parallel to **r**.

Find the unit vector in the direction of $\mathbf{q} = 5\mathbf{i} - 12\mathbf{j}$.

DISPLACEMENT AND POSITION VECTORS | KEY FACTS

- A vector that represents the *displacement between two points* is called a *displacement vector*.
- A vector that represents the <u>displacement from a fixed origin</u> is called a <u>position vector</u>.
- If points A and B have <u>position vectors</u> **a** and **b**, then $\overrightarrow{AB} = \mathbf{b} \mathbf{a}$.

DISPLACEMENT AND POSITION VECTORS | EXAMPLE-PROBLEM PAIRS

(a) Find the distance between points <i>A</i> and <i>B</i> with position vectors $\mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}.$	Points <i>P</i> and <i>Q</i> have position vectors $\overrightarrow{OP} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$ and $\overrightarrow{OQ} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$. Find the distance PQ.
(b) Point <i>C</i> has position vector $c = \begin{pmatrix} 2 \\ p \end{pmatrix}$.	
Find the exact value of p such that $AC = 3AB$.	
MIDPOINTS KEY FACTS The midpoint of the line segment connecting with position	on vectors a and b is given by $\overrightarrow{OM} = \frac{1}{2}(\mathbf{a} + \mathbf{b})$.
Points on a Straight Line Key Facts	2
• If points A, B and C lie on a straight line, the vectors \overrightarrow{AB} o Therefore $\overrightarrow{AB} = k\overrightarrow{AC}$ o If points lie on a straight line, they are <u>collinear</u> . o	
Parallelograms and Rhombi Key Facts	A
• If $\overrightarrow{AB} = \overrightarrow{DC}$ then <i>ABCD</i> is a parallelogram.	
• If in addition, $ \overrightarrow{AB} = \overrightarrow{BC} $ then <i>ABCD</i> is a rhombus.	

A

 \overrightarrow{AD}

